

Chemistry class 11th Important Questions**1. Atomic Radius (Size)****General trend**

- Increases down a group
- Decreases across a period (left → right)

Usual order (same period)

Group 1 > Group 2 > Group 13 > Group 14 > Group 15 >

Group 16 > Group 17

Key exceptions

- N > O > F**
Due to strong electron-electron repulsion in compact p-orbitals
- Ga < Al**
Because of **d-block contraction**
- Pb ≈ Sn** (sometimes Pb smaller)
Due to **lanthanide contraction**

2. Ionic Radius**General trend**

- Cations < neutral atom**
- Anions > neutral atom**
- Increases down a group

Isoelectronic series order

Greater nuclear charge → smaller ion

 $\text{N}^{3-} > \text{O}^{2-} > \text{F}^- > \text{Ne} > \text{Na}^+ > \text{Mg}^{2+} > \text{Al}^{3+}$ **3. Ionization Energy (IE)****General trend**

- Increases across a period
- Decreases down a group

Usual order (period 2) $\text{Li} < \text{Be} < \text{B} < \text{C} < \text{N} < \text{O} < \text{F} < \text{Ne}$ **Important exceptions**

- Be > B**
(filled 2s orbital is more stable)
- N > O**
(half-filled p³ is more stable than p⁴)
- Al < Mg**
- S < P**

4. Electron Affinity (EA)**General trend**

- Becomes **more negative** across a period
- Less negative down a group

Expected order $\text{Cl} > \text{F} > \text{Br} > \text{I}$ **Exceptions**

- Cl > F**
(small size of F causes e⁻-e⁻ repulsion)
- N, Be, Mg, noble gases ≈ zero or positive EA**
 - N: half-filled p³
 - Be/Mg: filled s²
 - Noble gases: complete octet

5. Electronegativity (EN)**General trend**

- Increases across a period
- Decreases down a group

Highest to lowest (common) $\text{F} > \text{O} > \text{N} > \text{Cl} > \text{Br} > \text{I} > \text{S} > \text{C} > \text{P}$ **Exceptions / notes**

- N > Cl** (sometimes surprises students)
- Noble gases usually **excluded**
- F is the most electronegative element**

6. Metallic Character**General trend**

- Increases down a group
- Decreases across a period

Order (period 3) $\text{Na} > \text{Mg} > \text{Al} > \text{Si} > \text{P} > \text{S} > \text{Cl}$ **Exception**

- Al > Mg** in some chemical reactions (due to high charge density)

7. Oxidizing & Reducing Power**Oxidizing power (non-metals)** $\text{F}_2 > \text{Cl}_2 > \text{Br}_2 > \text{I}_2$ **Reducing power (metals)** $\text{Cs} > \text{Rb} > \text{K} > \text{Na} > \text{Li}$ **Exception**

- Li is strongest reducing agent in aqueous solution**
(high hydration enthalpy)

8. Shielding Effect**General trend**

- Increases down a group
- Almost constant across a period

Exception

- d and f electrons shield poorly**
→ causes:
 - Lanthanide contraction
 - High density & high IE in transition metals

9. Inert Pair Effect**Observed in**

- Heavier p-block elements (Group 13–16)**

Effect

Lower oxidation states become more stable down the group

ExampleGroup 13: +3 → +1 (Tl⁺ most stable)Group 14: +4 → +2 (Pb²⁺ stable)**10. Diagonal Relationship**

Elements diagonally adjacent show similar properties:

 $\text{Li} \leftrightarrow \text{Mg}$ $\text{Be} \leftrightarrow \text{Al}$ $\text{B} \leftrightarrow \text{Si}$ Reason: similar **charge density and size****11. Lanthanide Contraction****What it is**

<p>1. Acidic strength of hydrides (H–X) Across a period (left → right) Acidity increases with electronegativity: $\text{CH}_4 < \text{NH}_3 < \text{H}_2\text{O} < \text{HF}$ Down a group (top → bottom) Acidity increases with size (weaker H–X bond): $\text{HF} < \text{HCl} < \text{HBr} < \text{HI}$</p> <p>2. Acidic strength of oxoacids (same central atom) More oxygen atoms → stronger acid $\text{HClO} < \text{HClO}_2 < \text{HClO}_3 < \text{HClO}_4$ Reason: greater –I effect and better resonance stabilization.</p> <p>3. Oxoacids with different central atoms (same oxidation state) Higher electronegativity → stronger acid $\text{HClO}_4 > \text{HBrO}_4 > \text{HIO}_4$</p> <p>4. Acidic strength of binary acids of non-metals General order: $\text{HF} < \text{HCl} < \text{HBr} < \text{HI}$ $\text{H}_2\text{O} < \text{H}_2\text{S} < \text{H}_2\text{Se} < \text{H}_2\text{Te}$ $\text{NH}_3 < \text{PH}_3 < \text{AsH}_3 < \text{SbH}_3$ Key idea: bond strength decreases down the group</p>	<p>Gradual decrease in atomic & ionic radii from La → Lu</p> <p>Consequences</p> <ul style="list-style-type: none"> • $\text{Zr} \approx \text{Hf}$ in size • High density & melting point of 5d elements • $\text{Ga} < \text{Al}$ (size anomaly) <p>5. Acidic strength of metal hydroxides Alkali metals $\text{LiOH} < \text{NaOH} < \text{KOH} < \text{RbOH} < \text{CsOH}$ Alkaline earth metals $\text{Mg}(\text{OH})_2 < \text{Ca}(\text{OH})_2 < \text{Sr}(\text{OH})_2 < \text{Ba}(\text{OH})_2$ (As metallic character increases, basicity increases → acidity decreases)</p> <p>6. Acidic strength of oxides Period 3 oxides $\text{Na}_2\text{O} < \text{MgO} < \text{Al}_2\text{O}_3 < \text{SiO}_2 < \text{P}_2\text{O}_5 < \text{SO}_3 < \text{Cl}_2\text{O}_7$ <ul style="list-style-type: none"> • Metal oxides → basic • Non-metal oxides → acidic • Al_2O_3 is amphoteric </p> <p>7. Acidic strength of organic acids Carboxylic acids Electron-withdrawing groups increase acidity: $\text{HCOOH} > \text{CH}_3\text{COOH} > \text{C}_2\text{H}_5\text{COOH}$ $\text{CF}_3\text{COOH} > \text{CCl}_3\text{COOH} > \text{CH}_3\text{COOH}$ Phenols (substituent effect) $\text{p-NO}_2\text{-phenol} > \text{phenol} > \text{p-CH}_3\text{-phenol}$</p> <p>8. Acidic nature of hydrogen halides in water Strong acids: $\text{HCl} \approx \text{HBr} \approx \text{HI}$ Weak acid: HF Exception reason: very strong H–F bond</p> <p>9. Acidic strength of polyprotic acids (same acid) Successive ionization: $\text{H}_3\text{PO}_4 > \text{H}_2\text{PO}_4^- > \text{HPO}_4^{2-} > \text{PO}_4^{3-}$</p>
--	---