

Chemistry class 11th Important Questions

Q1. A measured temperature on Fahrenheit scale is 200°F. What will this reading be on Celsius scale?
(a) 40°C (b) 94°C (c) 93.3°C (d) 30°C

Q2. If 500 mL of a 5 M solution is diluted to 1500 mL, what will be the molarity of the solution obtained?
(a) 1.5 M (b) 1.6 M (c) 0.017 M (d) 1.59 M

Q3. A hydrocarbon was found to contain 75% by mass of carbon and 25% by mass of hydrogen. What is empirical formula of the compound?
(a) C_2H_4
(b) C_2H_6
(c) CH_4
(d) C_6H_6

Q4. The number of significant figures in 0.001620 are
(a) 4
(b) 3
(c) 6
(d) 2

Q5. Which of the following measurement is more precise?
(a) 4.0
(b) 4.00
(c) 4.000
(d) 4.0000

Q6. What is mass percent silicon in 100 g of sodium silicate, Na_2SiO_3 ? [Na = 23, Si = 28, O = 16u]
(a) 16.7%
(b) 23.0%
(c) 28.0%
(d) 82.0 %

Q7. The number of carbon atoms in 1 mole or exactly 12.0 g of C-12 is called
(a) Faraday constant
(b) Avogadro's constant
(c) Rydberg constant
(d) None of these

Q8. Which of the following terms are unit less?
(a) Molality
(b) Molarity
(c) Mole fraction
(d) Density

Q9
30 % aqueous solution of glucose (Molar mass 180 g/ml) by mass. The mole fraction of glucose is equal to
(a) 0.06 (b) 0.041 (c) 0.02 (d) 0.08

Q10.

The molarity of NaOH in the solution prepared by dissolving 4g of in enough water to form 250 ml of solution is
(a) 0.2 M
(b) 0.1 M
(c) 0.4 M
(d) 0.8 M

Q11. The empirical formula and molecular mass of a compound are CH_2O and 180g respectively. What will be the molecular formula of the compound?
(a) $C_9H_{18}O_9$ (b) CH_2O (c) $C_6H_2O_6$ (d) $C_2H_4O_2$

Q12.

An organometallic compound on analysis was found to contain, C = 64.4%, H = 5.5% and Fe = 29.9%. Determine its empirical formula (At. mass of Fe = 56 u).

Ans :

Q13.

1 M solution of $NaNO_3$ has density 1.25 g cm^{-3} . Calculate its molality. (Mol. weight of $NaNO_3$ = 85 g mol^{-1})

Ans:

Q14.

The density of 3 molal solution of NaOH is 1.110 g ml⁻¹.

i. Calculate the molarity of the solution.

Ans:

Q15:

If 4 g of NaOH dissolves in 36 g of H₂O, calculate the mole fraction of each component in the solution.

Also, determine the molarity of solution (specific gravity of solution is 1g mL⁻¹).

Q16.

Calculate the amount of carbon dioxide that could be produced when

- I. 1 mole of carbon is burnt in air.
- II. 1 mole of carbon is burnt in 16 g of dioxygen
- III. 2 moles of carbon are burnt in 16 g of dioxygen.

Ans:

Q17:

(i) What is limiting reactant?

(ii) Oxygen is prepared by catalytic decomposition of potassium chlorate (KClO₃).

Decomposition of potassium chlorate gives potassium chloride (KCl) and oxygen (O₂). If 2.4 mol of oxygen is needed for an experiment, how many grams of potassium chlorate must be decomposed? (At. mass of K = 39, Cl=35.5, O = 16)

Q18.

The reactant which is entirely consumed in reaction is known as limiting reagent. In the reaction $2A + 4B \rightarrow 3C + 4D$, when 5 moles of A react with 6 moles of B, then

(i) which is the limiting reagent? (ii) Calculate the amount of C formed.

Ans:

Q20:

Calculate the average atomic mass of hydrogen using the following data :

Isotope % Natural abundance Molar mass

${}_1H^1$ 99.985 ${}_1H^2$ 0.015

Vimp. Q21:

Calcium carbonate reacts with aqueous HCl to give $CaCl_2$ and CO_2 according to the reaction given below:

What mass of $CaCl_2$ will be formed when 250 ml of 0.76 M HCl reacts with 1000 g of $CaCO_3$? Name the limiting reagent. Calculate the number of moles of $CaCl_2$ formed in the reaction.

Ans :