Question number 1 to 16 are Multiple Choice type questions, carrying 1 mark

each.

16x1=16

1. Number of significant figures in 3.0×10^8 is/are:

(A) 1

(B) 2

(C) 3

(D) 8

2. Number of moles in 7.3 g of HC ℓ is are :

(Molar mass H = 1g mol⁻¹, $C\ell = 35.5 \text{ g mol}^{-1}$)

(A) 0.1 mole

(B) 0.2 mole

(C) 2.0 mole

(D) 6.022×10^{23} mole

a trace of the following

OR INTO IN POSTA PERSON

3. Oxidation state of 'Mn' in K₂MnO₄ is:

(A) +2

(B) +4

(C) +6

(ESA ESH MASH)

(D) +7

4. Which of the following is not an example of redox reaction?

- (A) $CuO + H_2 \rightarrow Cu + H_2O$
- (B) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- (C) $2K + F_2 \rightarrow 2KF$
- (D) $BaC\ell_2 + H_2SO_4 \rightarrow BaSO_4 + 2HC\ell$

5. E^Θ values of redox couples are given below:

$$Fe^{3+}$$
 | $Fe = 0.77V$, $I_2(s)$ | $I^- = 0.54V$, Cu^{2+} | $Cu(s) = 0.34V$, Ag^+ | $Ag(s) = 0.80V$

Which of these is strongest oxidising agent?

(A) Fe^{3+}

 $I_2(\mathbf{S})$

(C) Cu²⁺

(D) Ag^+

6. Formal charge on nitrogen atom in NH₄ ion is:

(A) +1

(B) -1

(C) -3

(D) -4

7. The angle which corresponds to sp^2 hybridisation is:

(A) 90°

(B) 120°

(C) 109.5°

(D) 180°

का उन्नी हिल्हा कि वार्त के

8. The mass percent of carbon in carbon dioxide is:

(A) 0.34%

(B) 27.27%

(C) 30.4%

(D) 28.7%

9. Number of orbitals associated with third shell will be:

(A) 2

(B) 3

(C) 4

16 three (a) made for the court as every

10.	Whi	ch quantum number describe shapes of	orbita	ls?			
	(A)	Azimuthal quantum number	(B)	Principal quantum number			
	(C)	Spin quantum number	(D)	Magnetic quantum number			
11.	Baln	ner series in H-spectrum lies in which r	region?	in the Residence (A)			
	(A)	UV	(B)	Visible			
	(C)	IR	(D)	X-ray			
12.	Elen	nent with atomic number 31 belongs to					
	(A)	s-block	(B)	p-block			
	(C)	d-block	(D)	f-block			
	For	question number 13 to 16 two states	ments	are given – one labelled as Assertion			
	(A) and the other labelled as Reason (R). Select the correct answer to these						
	ques	stions from the order codes (a), (b), (c	e) and	(d) as given below.			
	(a)	Both Assertion (A) and Reason (explanation of Assertion (A).	R) are	true and Reason (R) is the correct			
	(b)) are t	rue and Reason (R) is not the correct			
		explanation of Assertion (A).	E THE				
	(c)	Assertion (A) and is true, but Reason	(R) is	false.			
	(d)	Assertion (A) and is false, but Reason	n (R) is	s true.			

Assertion (A): Electron gain enthalpy becomes less negative as we go down a group.

Reason (R): Size of the atom increases on going down the group and the added electron would be farther from nucleus.

14. Assertion (A): H₂O is liquid while H₂S is gas at room temperature.

Reason (R): H₂O involves in intermolecular H-bonding.

15. Assertion (A): If moving with same velocity, de Broglie wavelength of proton will be higher than electron.

Reason (R): According to de Broglie equation, wavelength is inversely proportional to mass of particle.

16. Assertion (A): All C-C bond lengths in benzene are same.

Reason (R): All carbon atoms in benzene are sp² hybridised.

SECTION-B

17. (i) State law of multiple proportion.

(ii) Calculate the mass of one atom of $^{16}_{8}$ O in gram.

- 18. How many electrons in an atom may have following quantum numbers? 2x1
 - (i) n=4, $m_s=-1/2$
 - (ii) n = 3, l = 0

1

Identify oxidising agent and reducing agent in following reaction: 19.

 $Pb(s) + PbO_{2}(s) + 2H_{2}SO_{4}(aq) \rightarrow 2PbSO_{4}(s) + 2H_{2}O(\ell)$

OR

What are disproportionation reactions? Write an example.

2

Write general electronic configuration of d-block elements. 20. (i)

1

Write IUPAC name of element having Z = 104. (ii)

The frequency of a radiation is 6.0×10^{14} Hz. Calculate its wavelength. Which part of 21. 2 electromagnetic spectrum does it belong to?

SECTION-C

Write electronic configuration of the following: 22.

3x1

- Cr (Z = 24)(i)
- $Fe^{3+}(Z=26)$ (ii)
- $S^{2-}(Z=16)$ (iii)

Describe the hybridisation in case of PC ℓ_5 . Why are the axial bonds longer as compared 23. to equatorial bonds?

म गरित का वाजनार कि है के एक मन्त्रकार के केम के कि कि

THE RECEIPTED TO STREET

- (i) First ionization enthalpy of nitrogen is higher than oxygen.
- (ii) Atomic radius of Ga is smaller than $A\ell$.
- (iii) The first elements of s-block and p-block elements shows anomalous behaviour from rest elements of the group.
- 25. An organic compound on analysis found to contain 57.82% carbon, 3.6% hydrogen and the rest oxygen. If molecular mass of compound is 166u, then calculate empirical and molecular formula of organic compound.

(Atomic masses: H = 1u, C = 12u, O = 16u)

OR

- (i) Define-mole fraction.
- (ii) The density of 3M solution of NaC ℓ is 1.25g mL⁻¹. Calculate molality of the solution. (Molar mass of NaC ℓ = 58.5 g mol⁻¹)
- 26. Calculate the wavenumber for the longest wavelength transition in the Balmer series atomic hydrogen. $(R_H = 1.1 \times 10^7 \text{ m}^{-1})$
- 27. Balance following redox reaction in acidic medium:

 $Cr_2O_7^{2-}(aq) + Fe^{2+}(aq) \rightarrow Cr^{3+}(aq) + Fe^{3+}(aq) + II (0)$

3

Following are Period-2 elements: 28. Li, Be, B, C, N, O, F, Ne Which element:? shows highest electronegativity? (i) 1 is largest in size? (ii) exhibits diagonal relationship with aluminium? (iii) SECTION-D The following questions are case based questions. Read the passage carefully and answer the questions that follow: The word 'stoichiometry' is derived from two Greek words-stoicheion (meaning 29. element) and metron (meaning measure). Stoichiometry thus deals with the calculation of masses (sometimes volumes also) of the reactants and products involved in a chemical reaction. Before understanding how to calculate the amounts of reactants required or the

products produced in a chemical reaction, we need to consider balanced chemical

according to following chemical

1

1 mole of a gas occupies volume at STP.

N₂(g) and H₂(g) reacts to form NH₃(g)

S-40) A 1 3 2 (8) 43 (5 5 5 5 10 10 10 10

equations.

(i)

(ii)

equation:

1

O

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

If 1.5 moles of $N_2(g)$ reacts completely with $H_2(g)$, how many moles of $NH_3(g)$ will be produced.

(iii) Calculate the amount of water (in grams) produced by the combustion of 24 g of methane.

OR

TEFT

20g of CaCO₃ and 20g of H₂SO₄ react to give CaSO₄ along with water and CO₂.

elike mist for basker tide

- (a) Determine the limiting reagent for above reaction.
- (b) How much CaSO₄ will be formed?

(Molar masses: $CaCO_3 = 100 \text{ g}$, $H_2SO_4 = 98 \text{ g}$, $CaSO_4 = 136 \text{ g}$)

- 30. Molecular orbital theory (MOT) explains the bonding in molecules by considering atomic orbital combining to form molecular orbitals. These molecular orbitals are spread over the entire molecule and can be bonding, antibonding or non-bonding. Electrons fill these orbitals according to Aufbau principle, Hund's rule and Pauli's exclusion principle. The theory helps to explain magnetic properties and bond order of molecules like O₂ which cannot be fully understood using valence bond theory alone.
 - (i) Define bond order.
 - (ii) Using molecular orbital theory, explain why Be₂ molecule does not exist?

(iii)	O ₂ is paramagnetic while N ₂ is diamagnetic. Explain using molecular orbital
	theory.
	OR
	Compare bond order and magnetic behaviours of O_2^+ and O_2^{2-} ions using
	molecular orbital theory.
	SECTION-E
(i)	Consider the following species:
	N^{3-} , O^{2-} , F^- , Na^+ , Mg^{2+} , $A\ell^{3+}$
	(a) What is common in them?
	(b) Arrange them in increasing order of their ionic radii. 1+1
(ii)	What is electron gain enthalpy? Arrange F, Cl, Br, I in increasing order of
	electron gain enthalpy.
(iii)	Name the series of elements where 4f orbital is progressively filled.
	OR
(i)	Enlist any two differences between electron gain enthalpy and electronegativity. 2

31.

ii)	Expla	ain: The first ionisation enthalpy of sodium $(Z=11)$ is lower than that of magnesium
		(Z=12) but its second ionisation enthalpy is higher than that of magnesium.
	(iii)	Arrange B, Al, Mg, K in increasing order of their metallic character.
32.	(i)	Out of NH ₃ and NF ₃ , which has higher dipole moment and why?
	(ii)	On the basis of VSEPR theory, explain of following molecules: 3x1
		(a) SF ₄
		(b) BrF ₃
		(c) XeF ₄
		OR
	(i)	Arranged BeCl ₂ , NH ₃ , CH ₄ , BF ₃ in increasing order of bond angles.
	(ii)	Enlist any two differences between sigma (σ) and pi(π) bonds.
	(iii)	Both H ₂ O and CO ₂ are triatomic molecules but H ₂ O is polar while CO ₂ is non-
		polar. Explain with the help of their structures.
33.	(i)	State Heisenberg uncertainty principle. Calculate the uncertainty in the velocity of
		ball of mass 150g and uncertainty in its position is of the order of 0.1 nm.
		$(h = 6.626 \times 10^{-34} \text{ JS})$
	(ii)	Draw the surface boundary diagram of d _{xy} orbital.
	(iii)	Calculate the number of radial nodes in 3p subshell.

(i)	State Pauli's exclusion principle.
(ii)	The mass of an electron is 9.1×10^{-31} kg. If its kinetic energy is 3.0×10^{-25} J,
	calculate its wavelength.
(iii)	Mention a difference between orbit and orbital.