

COMMON ANNUAL SCHOOL EXAMINATION (2022-23)
CLASS : XI
SUBJECT: PHYSICS (042)

Time Allowed : 3 hours

समय : 3 घंटे

Maximum Marks : 70

अधिकतम अंक - 70

सामान्य निर्देश:

- (1) कुल 35 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (2) इस प्रश्न पत्र में पाँच खंड हैं : खंड ए, खंड बी, खंड सी, खंड डी और खंड ई। सभी खंड अनिवार्य हैं।
- (3) खंड A में 15 MCQ और 3 अभिकथन तर्क MCQ, जिनमें से प्रत्येक 1 अंक का है।
खंड B में 2 अंकों के 7 लघु उत्तरीय प्रश्न हैं।
खंड C में तीन अंकों के पांच लघु उत्तरीय प्रश्न हैं।
खंड D में तीन दीर्घ उत्तरीय प्रश्न हैं, जिनमें से प्रत्येक में 5 अंक है।
खंड E में 4 अंक के दो केस आधारित प्रश्न हैं।
- (4) कोई समग्र विकल्प नहीं है। हालांकि आंतरिक विकल्प प्रदान किया जाता है। आपको ऐसे प्रश्नों में से केवल एक विकल्प का प्रयास करना है।
- (5) कैलकुलेटर के प्रयोग की अनुमति नहीं है।

GENERAL INSTRUCTIONS:

- (1) There are 35 questions in all. All questions are compulsory.
- (2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
- (3) Section A contains 15 MCQ and 3 assertion reasoning MCQs of 1 mark each.
Section B contains 7 short answer questions of 2 marks each.
Section C has five short answer questions of 3 marks each.

Section D contains three long answer questions of 5 marks each.

Section E has two case based questions of 4 marks each.

(4) There is no overall choice. However internal choice is provided. You have to attempt only one of the choices in such questions.

(5) Use of calculators is not allowed.

खंड-ए (Section-A)

सभी प्रश्न अनिवार्य हैं।

All questions are compulsory.

प्र.1 $ML^2 T^{-2}$ किसका विमीय सूत्र है -

(a) बल (b) गतिज कर्जा
(c) दाब (d) शक्ति

प्र.2 $ML^2 T^{-2}$ is the dimension Formula of :

(a) Force (b) Kinetic energy
(c) Pressure (d) Power

प्र.2 एक पिंड विराम से शुरू होता है और सेकंड के लिए $2m/s^2$ के एकसमान त्वरण के साथ चारा करता है। यदि इसके द्वारा किया गया विस्थापन 16 मीटर है, तो चारा का समय t है-

1

A body starts from rest and travels for t second with uniform acceleration of $2 m/s^2$. If the displacement made by it is 16 m, the time of travel t is :

(a) 5 s (b) 2 s
(c) 3 s (d) 4 s

प्र.3 यदि किसी वस्तु का विस्थापन-समय ग्राफ समय-अक्ष के समानांतर है, तो यह दर्शाता है कि वस्तु :

(a) आगम से है (b) एकसमान गति में है
(c) त्वरित गति में है (d) इनमें से कोई भी नहीं

If the displacement-time graph of an object is parallel to the time-axis, then it represents that the object is :

(a) at rest (b) in uniform motion
(c) in accelerated motion (d) none of the above

प्र.4 समान द्रव्यमान और समान बोंग के दो प्रक्षेप्य शैतज से 60 डिग्री और 30 डिग्री के कोण पर फेंके जाते हैं, तो कौन सी गारि समान रहेगी -

(a) उड़ान का समय

(b) शैतज सीमा

(c) अधिकतम ऊँचाई

(d) अधिकतम ऊँचाई तक पहुँचने में लगने वाला समय

Two projectiles of same mass and with same velocity are thrown respectively at angles 60 degree and 30 degree with the horizontal, then which quantity will remain same :

(a) Time of flight
(b) Horizontal range
(c) Maximum height
(d) Time in reaching maximum height

प्र.5 एक ब्लॉक शैतज के साथ एक कोण बनाते हुए एक झुके हुए तल पर आगम से है। जैसे ही झुकाव का कोण व बढ़ जाता है, झुकाव का कोण α हो जाने बढ़ जाता है, झुकाव का कोण θ हो जाने पर एक ब्लॉक बस फिसलने लगता है। फिर ब्लॉक और झुकाव बाले विमान की सतह के बीच स्थिर घर्षण का गुणांक है -

(a) $\sin \theta$ (b) $\cos \theta$
(c) $\tan \theta$ (d) θ से स्वतंत्र

A block is at rest on an inclined plane making an angle α with the horizontal. As the angle α of the inclination is increased, the block just starts slipping when the angle of inclination becomes θ . Then the coefficient of static friction between the block and the surface of the inclined plane is

(a) $\sin \theta$
(b) $\cos \theta$
(c) $\tan \theta$
(d) independent of θ

प्र.6 थक्का देने की तुलना में रोलर को खींचना आसान होता है, क्योंकि-

(a) एक जब हम एक रोलर खींचते हैं, तो खींचने वाले बल का लंबवत घटक भार की दिशा में कार्य करता है।
(b) खींचने वाले बल का ऊर्ध्वाधर घटक भार की विपरीत दिशा में कार्य करता है।
(c) घर्षण गुणांक कम हो जाता है।
(d) यह केवल रोलर के मामले में ही संभव है।

Pulling a roller is easier than pushing because :

(a) When we pull a roller, the vertical component of the pulling force acts in the direction of weight.
(b) the vertical component of the pulling force acts in the opposite direction of weight.
(c) coefficient of friction reduces.
(d) it is possible in the case of roller only.

प्र.7 एक टोस गोला मुक्त स्थान में घूम रहा है। यदि द्रव्यमान समान रखते हुए गोले की त्रिज्या बढ़ाई जाती है, तो निम्नलिखित में से कौन सा प्रभावित नहीं होगा? 1

(a) जड़त्वा आदर्श
(b) कोणीय संकेंद्र
(c) कोणीय वेग
(d) घूमी गतिज कर्जा

A solid sphere is rotating in free space. If the radius of the sphere is increased keeping mass same, which one of the following will not be affected?

(a) Moment of inertia
(b) Angular momentum
(c) Angular velocity
(d) Rotational kinetic energy

प्र.8 आग एक जिमनास्ट, एक घूमने स्टूल पर बैठा, अपनी बाहों को फैलाकर, अचानक अपने हाथों को नीचे कर देता है 1

(a) कोणीय वेग बढ़ता है
(b) जड़ता आघूर्ण बढ़ जाता है
(c) कोणीय वेग स्थिर रहता है
(d) कोणीय गति बढ़ जाती है

If a gymnast, sitting on a rotating stool, with his arms outstretched, suddenly lowers his hands :

(a) the angular velocity increases
(b) moment of inertia increases
(c) the angular velocity stays constant
(d) the angular momentum increases

प्र.9 यदि पृथ्वी का व्यास उसके वर्तमान मान से दोगुना हो जाता है लेकिन इसका द्रव्यमान अपरिवर्तित रहता है तो पृथ्वी की सतह पर किसी वस्तु का वजन (W) किससे प्रभावित होता है? 1

(a) $W/8$
(b) $W/2$
(c) $W/4$
(d) कोई बदलाव नहीं

If the diameter of the earth becomes twice its present value but its mass remains unchanged then the weight (W) of an object on the surface of the earth is affected by :

(a) $W/8$
(b) $W/2$
(c) $W/4$
(d) No change

प्र.10 पदार्थ जिन्हें बड़े विकृति का कारण बनने के लिए फैलाया जा सकता है, उन्हें क्या कहा जाता है?

1

(a) भंग
(b) तन्त्रता
(c) प्लास्टिक
(d) इलाटोमेर

Substances which can be stretched to cause large strains are called :

(a) Brittle
(b) Ductile
(c) Plastic
(d) Elastomer

प्र.11 क्रोंतक तापमान पर, एक तरल की सतह का तानाव क्या है?

1

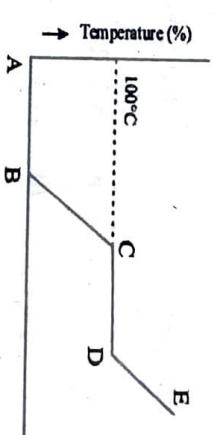
(a) बढ़ जाता है
(b) शून्य
(c) कोई बदलाव नहीं
(d) निर्धारित नहीं किया जा सकता

At critical temperature, the surface tension of a liquid is :

(a) Increased
(b) Zero
(c) No change
(d) Cannot be determined

प्र.12 100 डिग्री सेल्सियस पर धाव को 10 डिग्री सेल्सियस पर 20 ग्राम पानी में प्रवाहित किया जाता है, फिर पानी 80 डिग्री सेल्सियस का तापमान प्राप्त करता है, मौजूद पानी का द्रव्यमान होगा [पानी की विशिष्ट गर्मी = 1 कैल जी-1 डिग्री सेल्सियस-1 और धाव की अव्यक्त गर्मी = 540 कैलोरी जी-1]

(a) 24g
(b) 31.5g
(c) 42.5g
(d) 22.5g


Steam at 100°C is passed into 20 g of water at 10°C, then water acquires a temperature of 80°C, the mass of water present will be [Take specific heat of water = 1 cal g⁻¹°C⁻¹ and Latent heat of steam = 540 cal g⁻¹]

(a) 24g
(b) 31.5g
(c) 42.5g
(d) 22.5g

प्र.13 गर्म करने पर बर्फ की स्थिति में परिवर्तन को दर्शाने वाले तापमान और समय के ग्राफ का संदर्भ ले (पैमाने का नहीं)

1

Refer to the plot of temperature versus time showing the changes in the state of ice on heating (not of scale)

निम्नलिखित में से कौन सा कथन सही है?

(a) क्षेत्र AB थर्मल संतुलन में बर्फ और पानी को दर्शाता है

(b) B पर पानी उबलना शुरू होता है

(c) C पर सभी पानी धाव में परिवर्तित हो जाता है

(d) DE क्षेत्रांक पर संतुलन में पानी और धाव को को दर्शाता है

Which of the following is correct :

(a) The region AB represents ice & water in thermal equilibrium
(b) At B water starts boiling
(c) At C the water gets converted into steam
(d) DE represents water & steam in equilibrium at boiling point

प्र.14 एक तीसरी प्रणाली के साथ थर्मल संतुलन में दो प्रणालियां अलग-अलग एक दूसरे के साथ थर्मल संतुलन में हैं, यह किसका कथन है?

(a) ऊष्मप्रवैगिकी का प्रथम नियम
(b) ऊष्मप्रवैगिकी का दूसरा नियम
(c) ऊष्मप्रवैगिकी का शून्य नियम
(d) कोई नहीं

Two systems in thermal equilibrium with a third system separately are in thermal equilibrium with each other, this is the statement of:

(a) First law of thermodynamics (b) Second law of thermodynamics
 (c) Zeroth law of thermodynamics (d) None

प्र.15 1 मोल गैस के लिए गैस अणुओं की द्रांसलेशनल गतिज ऊर्जा किसके बराबर है? 1

(a) (3/2) RT (b) (5/3) RT
 (c) (3/5) RT (d) (2/3) RT

The translational kinetic energy of gas molecules for 1 mol of gas is equal to:

(a) (3/2) RT (b) (5/3) RT
 (c) (3/5) RT (d) (2/3) RT

प्रश्न संख्या 16, 17 व 18 के लिए दो कथन दिए गए हैं जिनमें एक को अधिकथन (A) तथा दूसरे को कारण (R) द्वारा दर्शाया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए (a), (b), (c) व (d) में से कोई चुनकर कीजिए।

(a) (A) और (R) दोनों सत्य हैं और (R), (A) की सही व्याख्या है।
 (b) (A) और (R) दोनों सत्य हैं और (R), (A) की सही व्याख्या नहीं है।
 (c) (A) सत्य है परन्तु (R) असत्य है।
 (d) (A) असत्य है और (R) भी असत्य है।

For question number 16, 17 and 18, two statements are given – one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:

(a) Both (A) and (R) are true and (R) is the correct explanation of (A).
 (b) Both (A) and (R) are true and (R) is the not correct explanation of (A).
 (c) (A) is true but (R) is false.
 (d) (A) is false but (R) is true.

प्र.16 अधिकथन (A) : जब एक सरल लोलक को चक्रमा की सतह पर दोलन कराया जाता है तो उसका आवर्तकाल बढ़ जाता है। 1

कारण (R) : चक्रमा पृथ्वी की तुलना में बहुत छोटा है।

Assertion (A) : When a simple pendulum is made to oscillate on the surface of Moon, its time period increases.

Reason (R) : Moon is much smaller as compared to Earth.

प्र.17 अधिकथन (A) : द्रायटोमिक अणुओं की स्वतंत्रता की डिग्री की संख्या 6 है। 1

कारण (R) : त्रिप्रमाणुक अणुओं में स्वतंत्रता की तीन स्थानांतरिय कोटि और स्वतंत्रता की तीन घूण्णों कोटि होती है।

Assertion (A) : The number of degrees of freedom of triatomic molecules is 6.

Reason (R) : Triatomic molecules have three translational degrees of freedom and three rotational degrees of freedom.

प्र.18 अधिकथन (A) : एक प्रणाली को आपूर्ति की गई ऊर्जा हमेशा इसकी अंतरिक ऊर्जा में वृद्धि के बराबर होती है। 1

कारण (R) : जब एक प्रणाली एक तापीय संतुलन से दूसरे में बदलती है, तो कुछ ऊर्जा इसके द्वारा अवशोषित होती है।

Assertion (A) : The heat supplied to a system is always equal to the increase in its internal energy.

Reason (R) : When a system changes from one thermal equilibrium to another, some heat is absorbed by it.

अथवा/OR

एक फिकेट गेट को शीतज से 30° ऊपर की दिशा में 28 m/s की गति से फेंका जाता है। प्रणाली की जिप्रे-

खंड-ब (Section-B)

(i) अधिकतम ऊंचाई

प्र.19 दो गतिमान कणों का विस्थापन समय ग्राफ़ समय अक्ष के साथ 30 डिग्री और 45

डिग्री का कोण बनाता है। उनके बिंदु को अनुपात क्या होगा?

2

The displacement-time graph of two moving particles make an angle of 30 degree and 45 degree with the time-axis. What will be the ratio of their velocities?

प्र.20 (a) हम बार-बार मोड़कर तार को कैसे लोड़ सकते हैं?

2

(b) नदी के पानी की तुलना में समुद्र के पानी में नैरा आमने क्यों है?

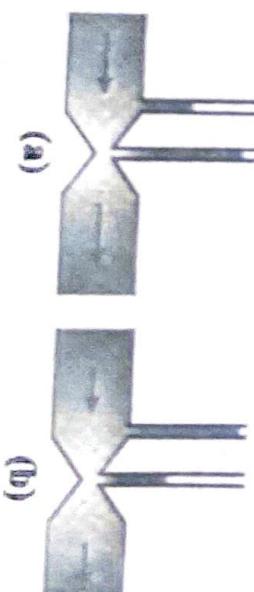
(a) How are we able to break a wire by repeated bending?

(b) Why is it easier to swim in sea water than in river water?

प्र.21 एक प्रक्षेप्य को शीतज से 8 कोण बनाते हुए बेंगा उसे दूरा जाता है। अधिक अंतराल कीजिए-

2

A truck and a car moving with the same K.E. on a straight road. Their engines are simultaneously switched off, which one will stop at a shorter distance? Justify.


प्र.23 चित्र (a) और (b) एक गैर-चिपचिये तरल के स्थिर प्रवाह को संदर्भित करता कि दोनों में से कौन सा अंकड़ा गलत है और क्यों?

2

The fig (a) & (b) refer to the steady flow of a non-viscous liquid which of the two figures is incorrect and Why?

A projectile is fired with velocity u making an angle θ with the horizontal. Derive expression for-

- (i) time of maximum height
- (ii) horizontal range

ଓথିବା/OR

हम संकीर्ण छोर में फूँक मार कर एक फनल से फिल्टर पेपर क्यों नहीं हटा सकते हैं।

Why we cannot remove a filter paper from a funnel by blowing air into the narrow end.

प्र.24 एक गैस को एक निश्चित तापमान और दबाव पर पिस्टन के साथ फिट किए गए सिलेंडर में भरा जाता है। पिस्टन को बाहर निकालने पर गैस का दबाव क्यों कम होता है।

A gas is filled in a cylinder fitted with a piston at a definite temperature and pressure. Why the pressure of the gas decreases when the piston is pulled out.

प्र.25 दिये हुए तापमान पर वायु में ध्वनि की गति दाढ़ से स्वतंत्र क्यों है यह समझाने के लिए $v = \sqrt{\frac{P}{\rho}}$ सूत्र का उपयोग करें।

Use the formula $v = \sqrt{\frac{yP}{\rho}}$ to explain why at given temperature the speed of sound in air is independent of pressure.

खंड-स (Section-C)

प्र.26 (a) (i) इनमें से कौन सबसे बड़ा है; खगोलीय इकाई, प्रकाश वर्ष और सक?

Which of these is largest Astronomical unit, Light year and Parsec?

तरं की तरंदेव्य का विमीय सूत्र लिखिए।

In a system of units in which the unit of mass is a kg, unit of length is b metre and the unit of time is c second, What will be the magnitude of a calorie?

बनैली के प्रमेय को साबित करों। इस प्रमेय के किन्तु दो अनुप्रयोगों के नाम लिखिए।

Prove Bernoulli's theorem. Name any two applications of this theorem.

अथवा/OR

टर्मिनल बोंग को परिभाषित करें। चिपचिपे तरल के माध्यम से गिरने वाले गोले के टर्मिनल बोंग के लिए एक अभिव्यक्ति प्राप्त करें।

Define terminal velocity. Obtain an expression for terminal velocity of a sphere falling through a viscous liquid.

प्र.28 बिना औंखों के चमगादङ्ग दूरियों, दिशाओं, बाधा की प्रकृति और आकार का पता लग सकते हैं कैसे? व्याख्या करें।

Bats can ascertain distances, directions; nature and size of an obstacle without any eyes, explain how?

ଓ/OR

ज्वनि आदि वायु में तेज गति से क्यों चलती हैं?

Why does the sound travel faster in humid air?

प्र.29 एक लोचदार स्थिंग को एक मात्रा x से संकुचित किया जाता है। दिखाएं कि इसकी स्थितिज ऊर्जा $\frac{1}{2}kx^2$ है जहाँ k स्थिरांक है।

3

An elastic spring is compressed by an amount x . Show that its potential energy is $\frac{1}{2}kx^2$ where k is the spring constant.

अथवा/OR

साबित करें कि समान द्रव्यमान के यिंड प्रत्यक्ष प्रवास्थकराव के बाद अपने बोगे का आदान-प्रदान करते हैं।

Prove that bodies of identical masses exchange their velocities after head-on elastic collision.

प्र.30 उष्मप्रवैगिकी का पहला नियम बताएं और गैस के आणविक विशिष्ट उभाओं के बीच संबंध प्राप्त करो। ($C_p - C_v = R$)

3

State first law of thermodynamics and derive the relation between molar specific heats of a gas ($C_p - C_v = R$)

खंड-३ (Section-D)

प्र.31 (a) एक कुशल बन्दूकधारी गोली मारते समय हमेशा अपनी बन्दूक को दूष्ट रेखा से थोड़ा ऊपर झुका कर रखता है। क्यों?

5

A skilled gunman always keeps his gun slightly tilted above the line of sight while shooting. Why?

(b) सिद्ध कीजिए कि क्षेत्रिज पास समान होता है जब प्रक्षेपण कोण होता है-

- (i) निश्चित मूल्य से 45 डिग्री से अधिक और
- (ii) समान मान से 45 डिग्री से कम

Prove that horizontal range is same when angle of projection is (i) greater than 45 degree by certain value and (ii) less than 45 degree by the same value

अथवा/OR

(a) रेखीय बोगा और कोणीय बोगा के बीच संबंध स्थापित कीजिए।

Derive the relation between linear velocity and angular velocity.

(b) कौन सा अधिक है घड़ी की घटे की सुई का कोणीय बोगा या पृथ्वी का अपनी धुरी के चारों ओर कोणीय बोगा? उनका अनुपात दीजिए।

Which is greater the angular velocity of the hour hand of a watch or angular velocity of earth around its own axis? Give their ratio.

प्र.32 (a) μ घर्षण गुणाक वाली झुकाओतार वृत्ताकार सड़क पर कार के बोगा के लिए व्यांजक व्युत्पन्न कीजिए तथा इस्तम बोगा के लिए व्यांजक लिखिए।

5

Derive an expression for velocity of a car on a banked circular road having coefficient of friction μ and write expression for optimum velocity.

(b) किन्तु 300 मीटर का एक गोलाकार दोड़ का मैदान 15 डिग्री के कोण पर बांधा गया है। यदि एक रेस-कार के पहियों और सड़क के बीच घर्षण गुणाक 0.2 है, तो क्या है?

A circular racetrack of radius 300 m is banked at an angle of 15°. If the coefficient of friction between the wheels of a race-car and the road is 0.2, what is the :

- (i) रेसकार के टायरों में टूट-फूट से बचने के लिए उसकी इस्तम गति, और
- (ii) optimum speed of the racecar to avoid wear and tear on its tyres, and

(ii) फिसलमे से बचने के लिए अधिकतम स्कोकार्ड गति?

maximum permissible speed to avoid slipping?

अथवा/OR

(a) घरण कोण और विश्राम कोण को परिभाषित करें और साबित करें कि दोनों संख्यात्मक रूप से बराबर हैं।

Define angle of friction and angle of repose and prove that both are numerically equal.

(b) एक घनाकार ब्लॉक $\mu = \sqrt{3}$ के एक शुके हुए तल पर टिका है। शुकाव के कोण को निर्धारित करें जब ब्लॉक झुकाव बते तल के नीचे स्लाइड करता है।

A cubical block rests on an inclined plane of $\mu = \sqrt{3}$. Determine the angle of inclination when the block just slides down the inclined plane.

प्र.33 (a) एक बच्चा एक चिकनी क्षेत्र तल पर गति v के साथ समान रूप से चलती है। एक लंबी ट्रॉली के एक छोर पर रिहर बैठता है। यदि बच्चा उठता है और द्रव्यमान केंद्र की गति क्या है?

एक बच्चा एक चिकनी क्षेत्र तल पर गति v के साथ समान रूप से चलती है। एक लंबी ट्रॉली के एक छोर पर रिहर बैठता है। यदि बच्चा उठता है और द्रव्यमान केंद्र की गति क्या है?

A child sits stationary at one end of a long trolley moving uniformly with a speed v on a smooth horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the speed of the CM of the (trolley + child) system?

(b) एक कार का वजन 1800 किलो है। इसके फ्रंट और बैंक एक्सल के बीच की दूरी 1.8 मीटर है। इसका गुरुत्व केंद्र फ्रंट-एक्सल से 1.05 मीटर पीछे है। प्रत्येक सामने के पहिये और प्रत्येक पिछले पहिये पर समतल भूमि द्वारा लाए गए बल का निर्धारण करें।

A car weighs 1800 kg. The distance between its front and back axles is 1.8 m. Its center of gravity is 1.05 m behind the front axle. Determine the force exerted by the level ground on each front wheel and each back wheel.

अथवा/OR

(a) घूण्ड गतिज कर्जा और जड़त्व आघूण्ड के बीच सम्बन्ध स्थापित कीजिए।

Derive the relation between rotational kinetic energy and moment of inertia.

(b) द्रव्यमान 1 किलो और क्रिया 0.2 मीटर की एक वृताकार डिस्क के घूण्डन की गतिज ऊर्जा की गणना करें जो केंद्र से गुजरने वाली धूरी के चारों ओर घूण्डन करती है और इसके तल के लंबवत होती है। डिस्क प्रति मिनट $30/\pi$ चक्कर लगाती है।

Calculate the K.E. of rotation of a circular disc of mass 1 kg and radius 0.2 m rotating about an axis passing through the center and perpendicular to its plane. The disc makes $30/\pi$ rotations per minute.

खंड-य (Section-E)

प्रश्न 34 व 35 विषय अध्ययन पर आधारित है व अनिवार्य है। हर प्रश्न के नीचे दिए गए प्रश्नों का उत्तर दीजिए। प्रश्नों के अंक प्रश्न के सामने वर्णन दिया गया है।

Q.34 and Q.35 are case study based questions and are compulsory. Attempt the questions following them. Marks of questions are mentioned against them.

प्र.34 हम जानते हैं कि पृथ्वी प्रत्येक वस्तु को एक निश्चित बल से आकर्षित करती है और यह बल वस्तु के द्रव्यमान (m) तथा गुरुत्वीय त्वरण (g) पर निर्भर करता है। किसी वस्तु का भार वह बल है जिससे वह पृथ्वी की ओर आकर्षित होता है। गणितीय रूप में

$$W = mg$$

जहाँ, W = वस्तु का भार

m = वस्तु का द्रव्यमान

g = गुरुत्वाकर्षण के कारण त्वरण

भार का SI मात्रक वही है जो बल का है, अर्थात् चूटन (N)। भार एक बल है जो लंबवत् रूप से नीचे की ओर कार्य करता है; इसमें परिमाण और दिशा दोनों हैं। हमने सीखा है कि किसी दिए गए स्थान पर ह का मान स्थिर रहता है।

अतः किसी दिए गए स्थान पर वस्तु का भार स्थिर होता है।

इसलिए किसी दिए गए स्थान पर, किसी वस्तु का भार वस्तु के द्रव्यमान, मान व्यतीजिए m के सीधे आनुपातिक होता है, अर्थात् $W \propto m$. इसी कारण से किसी दिए गए स्थान पर हम किसी वस्तु के भार को उसके द्रव्यमान के माप के रूप में उपयोग कर सकते हैं।

विभिन्न स्थानों पर g के मान में भिन्नता होती है, इसलिए ह के मान में परिवर्तन होने पर पिंड के भार में भी परिवर्तन होता है।

We know that the earth attracts every object with a certain force and this force depends on the mass (m) of the object and the acceleration due to the gravity (g). The weight of an object is the force with which it is attracted towards the earth. Mathematically $W=mg$

Where, W = weight of object

m = mass of object

g = acceleration due to the gravity

The SI unit of weight is the same as that of force, that is, Newton (N). The weight is a force acting vertically downwards; it has both magnitude and direction. We have learnt that the value of g is constant at a given place.

Therefore at a given place, the weight of an object is directly proportional to the mass, say m , of the object, that is, $W \propto m$. It is due to this reason that at a given place, we can use the weight of an object as a measure of its mass.

There is a variation in the value of g at different places.

Therefore weight of a body also changes as value of g changes.

(i) यदि किसी स्थान पर गुरुत्वाकर्षण त्वरण दुगुना कर दिया जाए तो वस्तु का भार होगा -

(a) आधा (b) दुगुना
(c) तीन गुना (d) समान

If the gravitational acceleration at any place is doubled. The weight of the body will be:

(a) Halved (b) Doubled
(c) Three times (d) Same

(ii) निम्नलिखित में से किस स्थान त्वरण से गिरने वाली वस्तु का निर्वात में अधिकतम त्वरण होगा?

(a) प्लास्टिक कॉर्क
(b) लोहे की कील
(c) कागज की गोद
(d) उपरोक्त सभी पदार्थों का त्वरण समान होगा

Which of the following freely falling objects will have maximum acceleration in vacuum?

- (a) plastic cork
- (b) Iron nail
- (c) paper ball
- (d) All above materials will have same acceleration

(iii) 9.8 N के पिंड पर 9.8 m/s² का त्वरण उत्पन्न करने के लिए आवश्यक बल क्या है? $g = 9.8 \text{ m/s}^2$ का प्रयोग करो।

- (a) 9.8 N
- (b) 19.6 N
- (c) 4.9 N
- (d) 29.4 N

What is the force required to produce an acceleration of 9.8 m/s² in a body of weight 9.8 N? Use $g = 9.8 \text{ m/s}^2$.

- (a) 9.8 N
- (b) 19.6 N
- (c) 4.9 N
- (d) 29.4 N

अथवा/OR

450 N भार वाली लड़की का द्रव्यमान कितना है?

- (a) 45.9 kg
- (b) 4.59 kg
- (c) 450 kg
- (d) 40 kg

What is the mass of a girl who weighs 450 N?

- (a) 45.9 kg
- (b) 4.59 kg
- (c) 450 kg
- (d) 40 kg

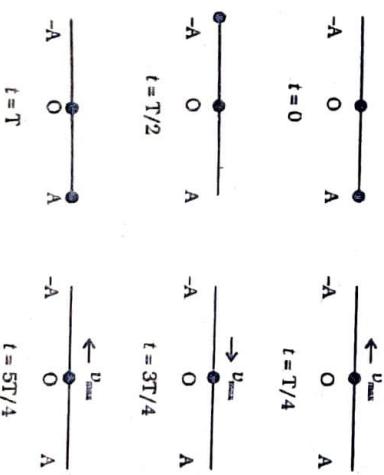
प्र.35 सरल आवर्ती गति एक कण पर विचार करें जो सीमा $+A$ और $-A$ के बीच X-अक्ष की उत्पत्ति के बारे में आगे और पीछे घूम रहा है जैसा कि नीचे दिए गए चित्र में दिखाया गया है।

इस दीलति गति को सरल आवर्ती गति कहा जाता है यदि मूल बिन्दु से कण का विस्थापन x समय के साथ निम्नलिखित रूप से बदलता है -

$$x(t) = A \cos(\omega t + \phi)$$

जहाँ A, ω और ϕ स्थिरांक हैं।

SIMPLE HARMONIC MOTION Consider a particle oscillating back and forth about the origin of an x-axis between the limits $+A$ and $-A$ as shown in figure below :


This oscillatory motion is said to be simple harmonic if the displacement x of the particle from the origin varies with time as $x(t) = A \cos(\omega t + \phi)$, where A, ω and ϕ are constants. Observe the location of the particle.

नीचे दिए गए चित्र में, असतत मानो $t = 0, T/4, T/2, 3T/4, T, 5T/4$ पर SHM में कण पर के स्थान पर निरीक्षण करें -

In SHM at the directive values

$t = 0, T/4, T/2, 3T/4, T, 5T/4$. In the figure given below:

निम्नलिखित प्रश्नों के उत्तर दें:

Answer the following questions :

(i) SHM का आयाम कण के विस्थापन का परिणाम है।

(a) चूर्णतम् (b) अधिकतम्
(c) शून्य (d) अपरिमित

The amplitude of SHM is the magnitude of displacement of the particle.

(a) Minimum (b) Maximum
(c) Zero (d) Undeterminate

(ii) यह फंक्शन $\sin \omega t - \cos \omega t$ एक साधारण हार्मोनिक गति का प्रतिनिधित्व करता है जिसमें एक अवधि होती है-

(a) $T = 4\pi/\omega$ (b) $T = 2\pi/\omega$
(c) $T = \pi/\omega$ (d) $T = 2\pi/3\omega$

This function $\sin \omega t - \cos \omega t$ represents a simple harmonic motion having a period-

(a) $T = 4\pi/\omega$ (b) $T = 2\pi/\omega$
(c) $T = \pi/\omega$ (d) $T = 2\pi/3\omega$

A particle is executing SHM with a period of T seconds and amplitude A meter. The shortest time it takes to reach a point $A/\sqrt{2}$ m from its mean position in seconds is :

(a) T (b) $T/2$
(c) $T/4$ (d) $T/8$

(iii) यदि एक छेद पृथ्वी के व्यास के साथ खोदा गया है और एक पत्थर छेद में निम्न दिया गया है:

(a) पत्थर पृथ्वी के दूसरी ओर पहुँचकर स्पैस में चला जाता है।
(b) पत्थर पृथ्वी के दूसरी ओर पहुँचता है और वहाँ रुक जाता है।
(c) पत्थर पृथ्वी के केंद्र के बारे में सरल हार्मोनिक गति करता है।
(d) पत्थर पृथ्वी के केंद्र में पहुँचता है और वहाँ रुक जाता है।

If a hole is bored along the diameter of the earth and a stone is dropped into the hole

(a) The stone reaches the other side of the earth and escapes into space.
(b) The stone reaches the other side of the earth and stops there.
(c) The stone executes simple harmonic motion about the center of the earth
(d) The stone reaches the center of the earth and stops there.

अथवा/OR

एक कण T सेकंड और आयाम A मीटर की अवधि के साथ SHM कर रहा है। एक बिंदु $A/\sqrt{2}m$ तक पहुँचने में लगने वाला सबसे कम समय अपनी औसत स्थिति से सेकंड में है-

(a) T (b) $T/2$
(c) $T/4$ (d) $T/8$

प्रतिविषयक