LEARNING HORIZON

1. Types of Real Numbers

Real numbers include all numbers on the number line. These are divided into:

Set	Symbol	Examples
Natural Numbers	Ν	1, 2, 3, 4,
Whole Numbers	W	0, 1, 2, 3,
Integers	Z	-3, -2, 0, 1, 2,
Rational Numbers	Q	3/4,-5,0.25
Irrational Numbers	'Q′	2,π,3,√2 ⁻ .,√2 3
Real Numbers	R	All of the above
Real Numbers	К	All of the above

🗹 2. Rational vs Irrational Numbers

Property	Rational Numbers R	Irrational Numbers Q'
Can be written as p/q	Yes $(q \neq 0)$	No
Decimal form	Terminating or repeating	Non-terminating, non-repeating
Examples	½ ,2/4,0.25	π, √2 .,√3

🔽 3. Simplifying Surds

• What is a surd?

A surd is an irrational root (not a perfect square/cube).

• Rules to simplify:

Rules to simplify:

 $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$ $\sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2}$ $\sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$

• Addition of surds:

Only like surds can be added:

 $2\sqrt{3} + 5\sqrt{3} = 7\sqrt{3}, \quad \mathrm{but} \quad \sqrt{2} + \sqrt{3} = \mathrm{cannot} \ \mathrm{be} \ \mathrm{simplified}$

4. Laws of Exponents for Real Numbers

Law	Formula	Example
Product rule	$a^m\cdot a^n=a^{m+n}$	$2^3\cdot 2^2=2^5$
Quotient rule	$rac{a^m}{a^n}=a^{m-n}$	$rac{5^4}{5^2} = 5^2$
Power of a power	$(a^m)^n=a^{mn}$	$(3^2)^4 = 3^8$
Zero exponent	$a^0=1$ (a $ eq$ 0)	$7^0=1$
Negative exponent	$a^{-m}=rac{1}{a^m}$	$2^{-3}=rac{1}{8}$

5. Prime Factorization and Euclid's Division Algorithm

• Prime Factorization Method

- Break the number into a product of **prime numbers**.
- Example:

$$60 = 2^2 \cdot 3 \cdot 5$$

LCM and HCF using Prime Factorization

- Find prime factors of each number.
- HCF: Product of common prime factors with lowest power.
- LCM: Product of all prime factors with highest power.
 - Example:

Let $60=2^2\cdot 3\cdot 5$, and $48=2^4\cdot 3$

- HCF = $2^2 \cdot 3 = 12$
- LCM = $2^4 \cdot 3 \cdot 5 = 240$
- Euclid's Division Algorithm

Used to find **HCF of two numbers**.

Step-by-step process:

- Divide the larger number by the smaller.
- Replace: larger = smaller, smaller = remainder.
- Repeat until remainder = 0.
- The last non-zero remainder is the HCF.
- Example: Find HCF of 56 and 72

```
1. 72 = 56 \cdot 1 + 16
```

- 2. $56 = 16 \cdot 3 + 8$
- 3. $16 = 8 \cdot 2 + 0$
- HCF = 8

LEARNING HORIZON

SELF NOTES