Class 11

Physics

Mathematical tools

1. Equations in Physics

✓ What is an equation?

An equation states that two expressions are equal. In physics, equations describe how quantities relate to each other.

• Types of Equations in Physics

Туре	Example	Meaning
Kinematic equations	s v=u + at	Final velocity in linear motion
Dynamic equations	F=ma	Newton's Second Law
Energy equations	$E=1/2mv^2$	Kinetic energy
Wave equations	v=fλv	Speed of a wave
Electric equations	V=IR	Ohm's Law

• How to Use Equations in Physics

- 1. Substitute known values (e.g. a=9.8 m/s²)
- 2. Solve for unknown using algebra
- 3. Check units to ensure correctness
- 4. Analyse the result physically

• 2. Inequalities in Physics

What is an inequality?

An inequality shows that one quantity is **greater than**, **less than**, or **not equal to** another.

 Examples in Physics 			
Inequality	Meaning		
v <c< td=""><td>Nothing can move faster than light (special relativity)</td></c<>	Nothing can move faster than light (special relativity)		
$\mu_s \geq \tan \theta$	Condition for static friction preventing slipping		
KE≤EKE	Kinetic energy \leq total energy in bound systems		
P>0	Pressure is always positive in thermodynamic systems		
E>WE	Energy input must exceed useful work in real machines (due to losses)		

• How to Use Inequalities

- Set boundaries or conditions (e.g., for equilibrium or stability)
- Predict feasibility (e.g., whether motion will occur)
- Estimate maximum or minimum values (e.g., max height, max speed)

Mathematical Tool: Quadratic Equations in Physics

A quadratic equation is an equation of the form:

 $ax^2+bx+c=0$

where:

- a, b, c are constants
- x is the variable
- a≠0

• 1. General Solution (Quadratic Formula)

• To solve

 $ax^2+bx+c=0$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

The term under the square root, b^2 -4ac is called the **discriminant**:

- If **positive**, two real roots
- If zero, one real root

• If **negative**, no real roots (complex roots)

• 2. Quadratic Equations in Physics

• **Common Physics Contexts**

Context	Example	Physical Meaning
Kinematics	$s=ut+rac{1}{2}at^2$	Solving for time t
Projectile motion	$y=y_0+v_0t-rac{1}{2}gt^2$	Solving for height or time
Conservation of energy	$rac{1}{2}mv^2 + mgh = E$	Solving for speed v
Lenses/Mirrors	$rac{1}{f} = rac{1}{v} - rac{1}{u}$	Can be rearranged into quadratic form

4. Quick Tips

- Always check units.
- Use the **discriminant** to know the nature of the solution.
- In physics, **ignore negative time or non-physical roots**.

Mathematical Tool: Proportionality and Scaling in Physics

• **Proportionality** and **scaling** are powerful tools in physics to understand how one quantity changes when another changes.

1. Types of Proportionality

Direct Proportionality

- A∝B
- ⇒A=kB
- As B increases, A increases.
- Graph: Straight line through the origin.

7 🗖

- Examples:
- $F \propto a$ (Newton's second law)
- $V \propto T$ (at constant pressure, ideal gas law)

Inverse Proportionality

$$A \propto rac{1}{B} \quad \Rightarrow \quad A = rac{k}{B}$$

As B increases, A decreases.

Examples:

- $F \propto rac{1}{r^2}$ (gravitational/electric force)
- $P \propto rac{1}{V}$ (Boyle's Law)

Quadratic or Power Proportionality

$A \propto B^n$

Examples:

- $E_k \propto v^2$ (kinetic energy)
- $I \propto r^2$ (intensity of light from a point source)
- $T \propto L^{1/2}$ (simple pendulum)

2. Scaling in Physics

What is Scaling?

Scaling shows how one physical quantity changes when dimensions or input values change.

 Scaling Laws 		
Quantity	Scales as	Example
Area	L^2	Doubling length \rightarrow area becomes 4 times
Volume	L^3	Tripling length \rightarrow volume becomes 27 times
Mass	L^3 (assuming same density)	Larger objects have much more mass
Gravitational Force	$\propto rac{1}{r^2}$	Force decreases quickly with distance
Drag Force	$\propto v^2$	Faster object faces more resistance

Mathematical Tool: Logarithmic and Exponential Relationships in Physics

Exponential and logarithmic functions are used in physics to describe rapid changes—like **growth**, **decay**, and **scaling** over time or space.

• 1. Exponential Relationships

General Form:

 $y = Ae^{kx}$

Where:

- A: initial value
- e: Euler's number (\approx 2.718)
- k constant (positive \rightarrow growth, negative \rightarrow decay)
- x variable (time, distance, etc.)

• Examples in Physics

Situation	Equation	Description
Radioactive decay	$N=N_0e^{-\lambda t}$	N : remaining nuclei, λ : decay constant
Charging a capacitor	$Q=Q_0(1-e^{-t/RC})$	Exponential approach to max charge
Cooling (Newton's Law)	$T=T_0e^{-kt}$	Temperature decays over time
Population growth	$P = P_0 e^{rt}$	In ecology or thermodynamics
Sound intensity loss	$I=I_0e^{-lpha x}$	Damping in a medium

2. Logarithmic Relationships

General Form:

$x = \log_{b}(y)$

Where:

- log b: logarithm base b
- ln(y) : natural logarithm (base e)

• Examples in Physics

Situation	Equation	Description
Sound level (decibels)	$L = 10 \log_{10} \left(rac{I}{I_0} ight)$	Logarithmic scale for sound intensity
pH scale	$\mathrm{pH} = -\log_{10}[H^+]$	In chemistry/biology
Richter scale (earthquakes)	$M = \log_{10}\left(rac{A}{A_0} ight)$	Measures magnitude on a logarithmic scale
Half-life calculations	$t=rac{\ln(N_0/N)}{\lambda}$	Logarithmic decay

- 3. Key Properties
- Exponential Rules

Exponential Rules

•
$$e^a \cdot e^b = e^{a+b}$$

•
$$(e^a)^b = e^{ab}$$

• $e^0 = 1$

Logarithmic Rules

- $\log(ab) = \log a + \log b$
- $\log(a^b) = b \log a$
- $\log\left(\frac{a}{b}\right) = \log a \log b$

4. Visual Understanding

- Exponential growth: rapid rise (J-shaped curve)
- Exponential decay: rapid fall leveling off
- Logarithmic: fast increase at first, then slows down (opposite of exponential)

2. Trigonometry

1. Sine, Cosine, Tangent — Basic Trigonometric Ratios

These relate the angles of a right triangle to the ratios of its sides:

 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}, \quad \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}, \quad \tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

Applications in Physics:

Concept	Use
Inclined planes	Resolve forces: $F_{\parallel}=mg\sin heta$, $F_{\perp}=mg\cos heta$
Projectiles	Resolve velocity: $v_x = v \cos heta$, $v_y = v \sin heta$
Circular motion	Components of radial and tangential acceleration

2. Trigonometric Identities

These simplify and solve equations involving angles.

Fundamental Identities:

$$\sin^2 heta + \cos^2 heta = 1$$

 $an heta = rac{\sin heta}{\cos heta}$
 $1 + \tan^2 heta = \sec^2 heta$

Common Uses in Physics:

- Simplifying wave equations (e.g., $A \cos(\omega t)$, $A \cos(\omega t)$ and
- Phase differences in interference
- Solving motion on inclined surfaces or pendulum motion

3. Vector Components and Angles

Resolving a Vector into Components:

• For a vector \vec{A} at angle θ to the horizontal

$$A_x = A\cos\theta, \quad A_y = A\sin\theta$$

- A_x : horizontal component
- A_y : vertical component

Rebuilding from Components:

$$A=\sqrt{A_x^2+A_y^2}, \hspace{1em} heta= an^{-1}\left(rac{A_y}{A_x}
ight)$$

🗹 Used in:

- Projectile motion
- Forces and torque
- Electric fields
- Work done by angled forces $W=F d \cos \theta$

4. Circular Motion and Waves

🗹 Circular Motion

🔽 Trigonometry in Circular Motion

• Position as function of time:

$$x(t) = r\cos(\omega t), \quad y(t) = r\sin(\omega t)$$

• Useful in describing uniform circular motion and simple harmonic motion (SHM)

Angle Sum and Difference Formulas

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Double Angle Formulas

$$\sin 2 heta = 2\sin heta\cos heta \ \cos 2 heta = \cos^2 heta - \sin^2 heta = 2\cos^2 heta - 1 = 1 - 2\sin^2 heta \ an 2 heta = rac{2 an heta}{1 - an^2 heta}$$

Half-Angle Formulas

$$\sin^2 heta=rac{1-\cos 2 heta}{2}, \quad \cos^2 heta=rac{1+\cos 2 heta}{2}$$

Product-to-Sum Formulas

$$\sin A \sin B = rac{1}{2}[\cos(A-B)-\cos(A+B)]$$

 $\cos A \cos B = rac{1}{2}[\cos(A-B)+\cos(A+B)]$
 $\sin A \cos B = rac{1}{2}[\sin(A+B)+\sin(A-B)]$

Sum-to-Product Formulas

$$\sin A + \sin B = 2 \sin \left(rac{A+B}{2}
ight) \cos \left(rac{A-B}{2}
ight)$$
 $\cos A + \cos B = 2 \cos \left(rac{A+B}{2}
ight) \cos \left(rac{A-B}{2}
ight)$

Values of Trig Functions at Standard Angles

θ	$\sin heta$	$\cos heta$	an heta
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	Not defined

Vectors in Physics

Vectors are quantities that have both **magnitude** and **direction**. They're essential in physics to represent quantities like **force**, **velocity**, **acceleration**, and **displacement**

1. Vector Addition and Subtraction

- Geometrical (Graphical) Method:
 - Head-to-tail method for addition
 - Tip-to-tip subtraction: $ec{A}-ec{B}=ec{A}+(-ec{B})$

Algebraic Method:

lf

$$ec{A}=A_x\hat{i}+A_y\hat{j}, \quad ec{B}=B_x\hat{i}+B_y\hat{j}$$

Then:

$$egin{aligned} ec{A} + ec{B} &= (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j} \ ec{A} - ec{B} &= (A_x - B_x) \hat{i} + (A_y - B_y) \hat{j} \end{aligned}$$

2. Dot Product (Scalar Product)

Definition:

$$ec{A} \cdot ec{B} = AB\cos heta$$

Where heta is the angle between $ec{A}$ and $ec{B}$.

Component Form:

$$ec{A} \cdot ec{B} = A_x B_x + A_y B_y + A_z B_z$$

Properties:

- Scalar result
- Commutative: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- Used to find angle between vectors:

$$\cos\theta = \frac{\vec{A} \cdot \vec{B}}{AB}$$

Applications:

- Work done: $W = ec{F} \cdot ec{d} = F d \cos heta$
- Projection of one vector onto another

3. Cross Product (Vector Product)

Definition:

 $\vec{A} imes \vec{B} = AB \sin \theta \ \hat{n}$

Where:

- \hat{n} is a unit vector **perpendicular** to both $ec{A}$ and $ec{B}$
- Follows the right-hand rule
- Component Form:

$$ec{A} imesec{B}=egin{bmatrix} \hat{i}&\hat{j}&\hat{k}\ A_x&A_y&A_z\ B_x&B_y&B_z \end{bmatrix}$$

Properties:

- Vector result
- Not commutative: $ec{A} imesec{B}=-(ec{B} imesec{A})$

Applications:

- Torque: $ec{ au} = ec{ au} imes ec{ au}$
- Angular momentum: $ec{L}=ec{r} imesec{p}$
- Magnetic force: $ec{F}=qec{v} imesec{B}$

4. Vector Components in 2D and 3D

🔽 In 2D:

 $ec{A} = A_x \hat{i} + A_y \hat{j} \quad ext{with} \quad A_x = A \cos heta, \quad A_y = A \sin heta$

🔽 In 3D:

$$ec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Magnitude:

$$ec{A}ec{A}ec{A} = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

5. Applications in Physics

Vector Quantity	Example Equation	Context
Force	$ec{F}=mec{a}$	Newton's 2nd law
Velocity	$ec{v}=rac{dec{r}}{dt}$	Motion
Acceleration	$ec{a}=rac{dec{v}}{dt}$	Kinematics
Momentum	$ec{p}=mec{v}$	Collisions
Torque	$ec{ au}=ec{r} imesec{F}$	Rotation
Electric field	$ec{E}=rac{ec{F}}{q}$	Electrostatics
Magnetic force	$ec{F}=qec{v} imesec{B}$	Electromagnetism

Calculus in Physics

1. Differentiation

Definition:

If y = f(x), the derivative is:

$$rac{dy}{dx} = \lim_{\Delta x o 0} rac{f(x+\Delta x) - f(x)}{\Delta x}$$

It gives the **instantaneous rate of change** of y with respect to x.

Applications in Physics:

Quantity	Expression	Meaning
Velocity	$v(t)=rac{dx}{dt}$	Rate of change of position
Acceleration	$a(t)=rac{dv}{dt}=rac{d^2x}{dt^2}$	Rate of change of velocity
Slope of a graph	$\frac{dy}{dx}$	Used to find tangents
Force from potential energy	$F(x)=-rac{dU}{dx}$	Conservative forces
Current from charge	$I=rac{dq}{dt}$	Rate of flow of charge

Sum/Difference Rule

$$rac{d}{dx}[f(x)\pm g(x)]=f'(x)\pm g'(x)$$

Product Rule

$$rac{d}{dx}[f(x)g(x)]=f'(x)g(x)+f(x)g'(x)$$

Quotient Rule

$$rac{d}{dx}\left(rac{f(x)}{g(x)}
ight)=rac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}$$

Chain Rule

$$rac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)$$

Derivatives of Trigonometric Functions

$$egin{aligned} &rac{d}{dx}(\sin x)=\cos x & ext{and} &rac{d}{dx}(\cos x)=-\sin x\ &rac{d}{dx}(\tan x)=\sec^2 x & ext{and} &rac{d}{dx}(\cot x)=-\csc^2 x\ &rac{d}{dx}(\sec x)=\sec x an x & ext{and} &rac{d}{dx}(\csc x)=-\csc x ax \end{aligned}$$

Derivatives of Inverse Trig Functions

$$egin{aligned} &rac{d}{dx}(\sin^{-1}x) = rac{1}{\sqrt{1-x^2}} &rac{d}{dx}(\cos^{-1}x) = -rac{1}{\sqrt{1-x^2}} \ &rac{d}{dx}(an^{-1}x) = rac{1}{1+x^2} &rac{d}{dx}(\cot^{-1}x) = -rac{1}{1+x^2} \end{aligned}$$

Derivatives of Exponential and Logarithmic Functions

$$egin{aligned} &rac{d}{dx}(e^x)=e^x &rac{d}{dx}(a^x)=a^x\ln a\ &rac{d}{dx}(\ln x)=rac{1}{x} &rac{d}{dx}(\log_a x)=rac{1}{x\ln a} \end{aligned}$$

Derivatives of Hyperbolic Functions

$$rac{d}{dx}(\sinh x) = \cosh x, \quad rac{d}{dx}(\cosh x) = \sinh x$$
 $rac{d}{dx}(\tanh x) = \mathrm{sech}^2 x \quad rac{d}{dx}(\coth x) = -\mathrm{csch}^2 x$