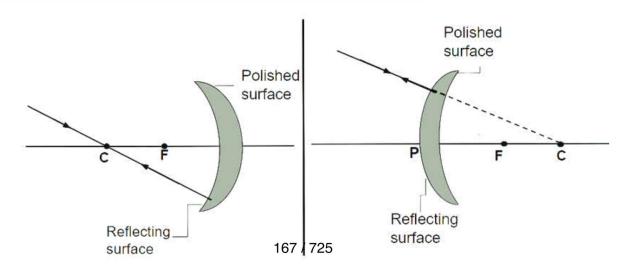
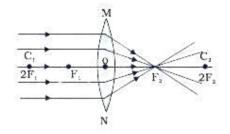

CHAPTER: ELECTRICITY

Sr. No	Topic	Formula
1.	Voltage (V)	$V = rac{W}{Q}$ W = Work done Q = Charge
2.	Current (i)	$i=rac{Q}{t}$ Q = Charge $$ t = time
3.	Power (P)	$P=Vi$ $^{ extsf{V}= extsf{Voltage}}$ i = Current
4.	Conductivity(σ)	$sigma = rac{1}{p}$ P = rho (Resistivity)
5.	Resistance(R)	$R=rac{pl}{A}orrac{V}{i}$ P = rho I = length A = Area
6.	Resistance in Series	$R_s=R_1+R_2+R_3.\ldots.$
7.	Power in Series	$P_s=Vi=i^2R \ P_s=rac{1}{P_1}+rac{1}{P_2}+rac{1}{P_3}.\ldots.$
8.	Resistance in Parallel	$rac{1}{R_p} = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3} . \ldots .$
9.	Power in Parallel	$P_p = Vi = rac{V^2}{R} \ P_p = P_1 + P_2 + P_3. \ldots .$
10.	Electric Energy or Heat Produced	$E=i^2Rt=Vit=rac{V^2}{R}t$

CHAPTER: LIGHT

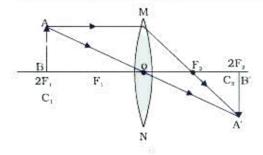
Sr. No	Topic	Formula
1.	Mirror Formula	$rac{1}{V}+rac{1}{U}=rac{1}{F}$ V = image distance U = object distance F = focal length
2.	Lens Formula	$rac{1}{V}-rac{1}{U}=rac{1}{F}$ V = image distance U = object distance F = focal length
3.	Magnifiation	$rac{H_i}{H_o} = rac{-V}{U}$ Hi = Height of image Ho = Height of object
4.	Power of a lens	$P=rac{1}{F}$ F = Focal length
5.	Absolute Refractive index	$n = rac{speed_of_light_in_Vacume}{speed_of_light_in_Medium}$
6.	Relative Refractive Index	$n_{21} = rac{speed_of_light_in_Medium1}{speed_of_light_in_Medium2}$
7.	Snell's Law	$n_{21}=rac{sini}{sinr}$ $$ i = incidence angle $$ r = refraction angle
8.	Combining power of lenses	$P=P_1+P_2+P_3.\ldots.$
9.	Radius Of Curvature	2*Focal length = 2f

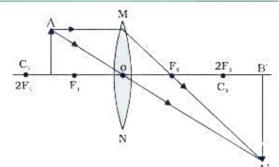

SIGN CONVENTIONS FOR MIRROR & LENS


MAGES FORMED BY CONCAVE MIRROR

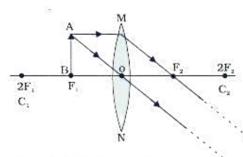
Position of object	Figure	Position of image	Nature of image
1. At infinity	F	At the principal focus or in the focal plane	Real, inverted, extremely diminished in size
2. Beyond the centre of curvature	C F	Between the principal focus and centre of curvature	Real, inverted and diminished
3. At the centre of curvature	C	At the centre of curvature	Real, inverted and equal to object
Between focus and centre of curvature	c A	Beyond centre of curvature	Real, inverted and bigger than object.
5. At the principal focus		At infinity	Extremely magnified
Between the pole and principal focus	C F	Behind the mirror	Virtual, erect and magnified

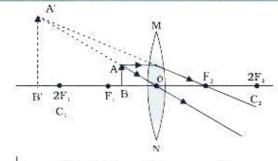
MAGES FORMED BY CONVEX MIRROR


MAGES FORMED BY CONCEX LENS


 BC_1 BC_2 BC_3 BC_4 BC_3 BC_4 BC_4 BC_4 BC_4 BC_5 BC_5

Case (i) Object at infinity


Case (ii) Object at beyond 2f



Case (iv) Object in between f and 2f

Case (v) Object at f

Case (vi) Object distance < f

MAGES FORMED BY CONCAVE LENS

	Ray diagram	Position of object	Position of image	Nature of image
(a)	2F F 2F	At infinity	At F	Virtual, erect and highly diminished
(b)	$u = -ve$, $v = -ve$ and $f = -ve$ $2F \qquad B \qquad F \qquad B' \qquad O \qquad F \qquad 2F$ $u = -ve$, $v = -ve$ and $f = -ve$	Between infinity and O	Between F and O	Virtual, erect and diminished

IMPORTANT DIAGRAMS

Topic	Diagram
Magnetic lines areound a magnetic bar	
Uniform Magnetic Field	magnetic field lines S N
Magnetic Field lines due to current carrying loop	Magnetic field lines (Anticlockwise) Key Battery
Magnetic Lines around two Magnets	S N N S N S N 169 / 725

Topic	Diagram
Magnetic lines areound a solenoid	
Magnetic lines around a current carrying conductor	Current (Upwards) Magnetic fielo lines (Anticlockwise)
Refraction through a glass prism	Angle of deviation N B N' M' Emergent ray D Glass prism

Topic	Diagram
Recombination of spectrum of white light	Glass prism White light Diperssion Glass prism
Rainbow Formation	Incident sunlight Refraction here Rays travel at different angles. Blue Partially reflected here Water droplet (enlarged) Refracted again here
Refraction through a glass slab	P O glass Q N M S S M P S