SET THEORY NOTES NDA I / NDA II 2025 / CUET 2025

- > Sets are usually denoted by capital letters A, B, C, etc.
- The members of a set are called its elements and are usually denoted by small letters ,*a*, *b*, *c*, etc.

Representation of Sets

- 1. Tabular or Roster method In this method, a set is described by writing elements, separated by commas, within the braces {}.
 - e.g. $N = \{1, 2, 3, 4, ...\}$ is a set of natural numbers.

 $A = \{2, 3, 5, 7, 11, 13\}$ is a set of first six prime numbers.

- $W = \{0, 1, 2, 3, 4, ...\}$ is a set of whole numbers.
- 2. Set-builder or Rule method In this method, a rule or a formula is written in the braces that defines the sets.

e.g. $A = \{x : x = 2n + 1, n \ge 1, n \in N\}, B = \{x : 6 \le x \le 12, x \in N\}, C = \{x : x = 2n, n < 8, n \in N\}$

Different Types of Sets

Null set A set which does not contain any element is called a null set. It is denoted by φ. A null set is also called an empty set or a void set. Therefore, φ={}

e.g. $A = \{x: x \text{ is a prime number between 90 and 96}\} = \phi$

2. Singleton set A set which contains only one element is called a singleton set.

e.g. $A = \{0\}, B = \{x : x + 10 = 0, x \in Z\}$

Finite set A set is called a finite set, if it is either void set or its elements can be counted or labelled by natural numbers 1,2,3, and the process of counting stops at a certain natural number (say 'n').
 e.g. A = {a, e, i, o, u} = Set of all vowels

The number of distinct elements of a finite set A is called the cardinal number of the set A and it is denoted by n(A).

4. **Infinite set** A set which has unlimited number of elements is called infinite set.

e.g. N = set of all natural numbers = {1, 2, 3, ...}
Z = set of all integers
= {..., -2, -1, 0, 1, 2, ...} are infinite sets.
5. Equivalent sets Two finite sets A and B are equivalent, if their cardinal numbers are same, i.e.

n(A) = n(B).
e.g. A = {a, b, c, d, e}; B = {1, 3, 5, 7, 9}
Here, n(A) = n(B)
So, these sets are equivalent sets.

6. Equal sets Two sets A and B are said to be equal, if every element of A is a

member of *B* and every element of *B* is a member of *A*. If sets *A* and *B* are equal, we write A = B and $A \neq B$, when *A* and *B* are not equal.

e.g. (i) *A* = {1, 3, 4} and *B* = {3, 1, 4} are equal sets. (ii) *A* = Letters of the word MASS = {M, A, S, S} *B* = Letters of the word SAM = {S, A, M} Here, *A* = *B* Since, {M, A, S, S} = {M, A, S} = {S, A, M} **Note** Equal sets are equivalent but equivalent sets may or may not be equal. e.g. Set $A = \{4, 5, 3, 2\}$ and $B = \{1, 6, 8, 9\}$ are equivalent but are not equal.

7. Subset Let A and B be two sets. If every element of A is an element of B, then A is called a subset of B and it is denoted by A ⊆B.
∴ A ⊆B, if x∈A => x ∈B e.g. If A = {1, 2, 3} and B = {1, 2, 3, 4, 5, 6}, then A ⊆B.
The total number of subsets of a finite set containing n elements is 2ⁿ.

8. Superset Let A and B be two sets. If B contains all elements of A, then B is called superset of A and it is denoted by $B \supseteq A$. e.g. If $B = \{a, b, c, d, ..., x, y, z\}$ and $A = \{a, e, i, o, u\}$ Then, $B \supseteq A$.

9. Proper subset A set *A* is said to be a proper subset of set *B*, if *A* is a subset of *B* and *A* is not equal to *B*. It is written as $A \subset B$. The total number of proper subsets of

a finite set containing *n* elements **is** $(2^n - 1)$. e.g. If $A = \{1, 2, 3\}$, then proper subsets of *A* are ϕ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$.

10. Universal set All the sets under consideration are likely to be subsets of a set which is called the universal set and is denoted by *U*. e.g. Let $A = \{1, 2, 3\}; B = \{2, 4, 6, 8\}; C = \{1, 3, 5, 7, 9\}$ and U = set of natural numbers. Here, *A*, *B* and *C* are the subsets of *U*. **Therefore U is an universal set.**

11. Power set Let *A* be a set, then the set of all the possible subsets of *A* is called the power set of *A* and is denoted by *P*(*A*). i.e. *P*(*A*) = {*S* | *S* \subseteq *A*} e.g. Let *A* = {1, 2, 3}. Then, subsets of *A* are ϕ , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}. $\therefore P(A) = {\phi, {1}, {2}, {3}, {1, 2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}}$

- Note Since, the empty set and the set A itself are subsets of A and also the elements of P (A). Thus, the power set of a given set is always **non-empty**.
- If a set A has n elements, then its power set will contain 2^n elements.

Some Important Properties

(i) $A \subseteq A, \forall A$ (ii) $\phi \subseteq A, \forall A$ (iii) $A \subseteq U, \forall A \text{ in } U$ (iv) $A = B \iff A \subseteq B, B \subseteq A$

Venn Diagram

Venn diagram are used to express relationship among sets. **In Venn diagram**, the universal set U is represented by a rectangle and its subsets are represented by closed curves (usually circles) within the rectangle.

Now, we introduce some operations on sets to construct new sets from the given ones.

1. **Union of two sets** Let A and B be two sets. The union of A and B is the set of all those elements which belongs to either A or B or both A and B. The union of A and B is denoted by A U B **(read as 'A union B')**.

Thus, $A \cup B = \{x : x \in A \text{ or } x \in B\}$

e.g. If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, then $A \cup B = \{1, 2, 3, 4, 5, 6\}$

2. **Intersection of two sets** Let A and B be two sets. The intersection of A and B is the set of all those elements which belong to both A and B. The intersection of A and B is denoted by $A \cap B$ (read as 'A intersection B').

Thus, $A \cap B = \{x : x \in A \text{ and } x \in B\}$

e.g. If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, then $A \cap B = \{3, 4\}$

3. **Disjoint of two sets** Two sets A and B are said tobe disjoint, if $A \cap B = \phi$, *i.e.* they don't have any common element. If $A \cap B \doteq \phi$, then A and B are said to be intersecting or overlapping sets.

e.g. If $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$

Then, $A \cap B = \phi$, so A and B are disjoint sets.

4. **Difference of two sets** Let A and B be two sets. The difference of A and B, written as (A - B) or $A \setminus B$, is the set of all those elements of A which do not belong to B. Thus, $(A - B) = \{x : x \in A, x \notin B\}$

The Venn diagram of A - B is as shown in the figure

Similarly, the difference (B - A) is the set of all those elements of B, which do not belong to A, i.e. $(B - A) = \{x : x \in B, x \notin A\}$. e.g. If $A = \{a, b, c, d, e\}$ and $B = \{a, c, e, g, i\}$ then, $A - B = \{b, d\}$ and $B - A = \{g, i\}$

5. **Symmetric difference of two sets** Let A and B be two sets. The symmetric difference of sets A and B is the set (A - B) U (B - A) and is denoted by $A \triangle B$.

Thus, $ADB = (A - B) U (B - A) = \{x : x \notin A \cap B\}$ e.g. If $A = \{a, b, c, d, e\}$ and $B = \{a, c, e, g, i\}$ Then, $A \triangle B = (A - B) U (B - A) = \{b, d\} U \{q, i\} = \{b, d, q, i\}$ 6. **Complement of a set** The complement of a set A is the set of all those elements which are in universal set but not in A. It is denoted by A¢ or A^c or U-A. If U is a universal set and A IU, then $A^{c} = U - A = \{x : x \in U, x \notin A\}$ Clearly, $x \in A^c \iff x \notin A$ e.g. If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A = \{1, 3, 5, 7, 9\}$, then $A \notin = \{2, 4, 6, 8, 10\}$ Laws of Algebra of Sets 1. Idempotent laws For any set A, we have (i) $A \cup A = A$ (ii) $A \cap A = A$ 2. *Identity laws* For any set A, we have (*i*) $A \cup \phi = A$ (*ii*) $A \cap \phi = \phi$ (iii) $A \cap U = A$ (iv) $A \cup U = U$ 3. Commutative laws For any two sets A and B, we have (i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$ 4. Associative laws If A, B and C are any three sets, then $(i) (A \cup B) \cup C = A \cup (B \cup C)$ $(ii) A \cap (B \cap C) = (A \cap B) \cap C$ 5. Distributive laws If A, B and C are any three sets, then $(i) A \cup (B \downarrow C) = (A \cup B) \cap (A \cup C)$ $(ii) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 6. **De-Morgan's laws** If A, B and C are any three sets, then (i) $(A \stackrel{`}{E} B)$ ¢ = A¢ \cap B' (*ii*) $(A \cap B)' = A' U B'$ 7. (i) $A - (B \cup C) = (A - B) \cap (A - C)$ $(ii) A - (B \cap C) = (A - B) \cup (A - C)$ (iii) $A - B = A \cap B' = B' - A'$ $(iv) A - (A - B) = A \cap B$ $(v) A - B = B - A \iff A = B$ $(vi) A \cup B = A \cap B \Leftrightarrow A = B$ (vii) $A \cup A' = U$ (viii) $A \cap A' = \phi$